高一数学教学计划

时间:2024-07-14 11:37:15
高一数学教学计划(15篇)

高一数学教学计划(15篇)

时间流逝得如此之快,我们的工作又迈入新的阶段,写一份计划,为接下来的工作做准备吧!什么样的计划才是有效的呢?以下是小编整理的高一数学教学计划,仅供参考,欢迎大家阅读。

高一数学教学计划1

日期





周次





学时





内容





重点、难点





9.1-9.7





1





5





集合的含义与表示、





集合间的基本关系、





集合的基本运算





会求两个简单集合的并集与交集;会求给定子集的补集;能使用Venn图表达集合的关系及运算。难点:理解概念





9.8-9.14





2





5





函数的概念、





函数的表示法





会求一些简单函数的定义域和值域;能简单应用





9.15-9.21





3





5





函数的基本性质、





学会运用函数图象理解和研究函数的性质,理解函数单调性、最大(小)值及几何意义





9.22-9.28





4





3





本章复习、测试






9.29-10.5





5






国庆放假






10.6-10.12





6





5





指数与指数幂的运算、





指数函数及其性质





掌握幂的运算;探索并理解指数函数的单调性与特殊点。难点:理解概念





10.13-10.19





7





5





对数与对数运算、





对数函数及其性质





理解对数的概念及其运算性质,知道用换底公式;探索并了解对数函数单调性与特殊点;知道指数函数与对数函数互为反函数





10.20-10.26





8





5





幂函数,复习、测试





从五个具体的幂函数(y=x,y=x2,y=x3,y=x-1,y=x1/2)图象中认识幂函数的一些性质





10.27-11.2





9





5





方程的根与函数零点,





二分法求方程近似解,





几类不同增长的模型、函数模型应用举例





能够借助计算器用二分法求相应方程的近似解;





对比指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义





日期





周次





学时





内容





重点、难点





11.3-11.9





10






期中复习及考试






11.10-11.16





11





5





讲评试卷





分析知识点的掌握情况





11.17-11.23





12





5





任意角和弧度制,





任意角的三角函数





了解任意角的概念和弧度制,能进行弧度与度的互化,借助单位圆理解任意角三角函数的定义。





11.24-11.30





13





5





三角函数的诱导公式,





三角函数的图象与性质





借助单位圆中的三角函数推导出诱导公式,能画出








的图象,理解三角函数的周期性、单调性、最值等性质

12.1-12.7





14





5





函数





< ……此处隐藏15149个字……与定点间距离恒定)建立适当的坐标系,再根据曲线上的点所满足的几何条件,求出点的坐标所满足的曲线方程。

通过研究方程来研究曲线的性质是解析几何的另一个主要内容,这就是解析几何通过代数方法研究几何图形的特点,也就是坐标法。始终强调曲线方程与曲线图像之间的一一对应。这一思想应该贯穿于整个圆的教学。

2.通过方程,研究直线与圆、圆与圆的位置关系是本章的主要内容之一。判断直线与圆、圆与圆的位置关系可以从两个方面着手:

(1)。两条曲线有无公共点,等价于由它们方程联立的方程组有无实数解。方程组有几组实数解,这两条曲线就有几个公共点;方程组没有实数解,这两条曲线就没有公共点。

(2)。运用平面几何知识,把直线与圆、圆与圆位置关系的结论转化为相应的代数结论。

3、坐标法是研究几何问题的重要方法,在教学过程中,应该始终贯穿坐标法这一重要思想,不怕重复;通过坐标系,把点和坐标、曲线和方程联系起来,实现形和数的统一。

用坐标法解决几何问题时,先用坐标和方程表示相应的几何对象,然后对坐标和方程进行代数讨论;最后再把代数运算结果翻译成相应的几何结论。这就是用坐标法解决平面几何问题的“三步曲”:

第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何元素,将平面几何问题转化为代数问题;

第二步:通过代数运算,解决代数问题;

第三步:把代数运算结果翻译成几何结论。

五、教学评价

㈠过程性评价

1、教学过程中,教师的讲解和学生的练习紧扣教学目标,内容深浅要分层次,设计的问题要照顾好、中、差。

2、对于方程的推导运用的方法,学生理解起来难度较大,主要采用让学生理解的基础上进行检测反馈

㈡终结性评价

1、课程内容全部结束后,让学生分组交流、讨论后,选代表谈收获、体会和感想。

2、留课后作业(扣教学目标、分类型、分层次,落实学生为主体),让学生认真理解和巩固,了解圆的标准方程和一般方程,以及直线与圆位置关系,做完课后习题,做好作业。

高一数学教学计划15

一、指导思想、

在新课程改革的教学理念下,以发展教育的观念为指引,以学校和教导处的工作计划为指南,改变教学观念,改进教学方法,更新教学手段,提高教学效率,提高学生的阅读能力、解题能力,促进学生学习态度、学习方式的转变,培养学生自主学习、积极探究、乐于合作的精神,注重学生数学素养的提高,关注学生的思想情感和交流,培养学生的创新思维和创造能力,为学生的可持续发展奠定基础。新课标理念下的政治教学活动应该不同于传统的课堂教学,改变教师的教法和学生的学法是在教学活动中体现最新教学理念的关键。

“导学案”应课堂教学改革与传统教学模式的矛盾而生,它既可以将学生自主学习引入正轨,又将学生可以自主探究理解完成的知识点与题目在课下解决,这样,课堂上教师就有足够的时间与学生共同研究解决本节课的重点与难点,从而提高了课堂效率。我们应该认识到改革是教学的生命,课程改革与课堂教学改革是一个不断发展、不断探索的过程。在这个过程中,要求教师能够正确、深刻地理解新课程理念,辩证地分析和处理各种在课程改革中产生的观念和做法,树立正确的育人理念,开拓进取,不断寻求新的有效的方法促进学生的全面发展。

二、教材特点、

我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》必修1、必修2,根据必修1、2设计的导学案。它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性,辩证地分析和处理各种在课程改革中产生的观念和做法,树立正确的育人理念,开拓进取,不断寻求新的有效的方法促进学生的全面发展。

三、学情分析、

本学期任教高一(35、36)班的数学,(35、36)班是平 班,部分学生学习数学的热情较高涨,比较自觉,能认真完成作业,但数学层次并不相同,部分同学基础薄弱,缺乏学习数学的方法。

四、教学策略、教研活动、

1、落实提高课堂效率,导学案的`设计目的是为了将学生的导学案与教师的集体备课设计为一体,

第一、课前预习。

教师设计此部分内容之前必须针对本课

题的三维目标与考纲认真备课,列出本节课的知识要点,对于重难点做特殊标记,并针对预习提纲给出的内容设计预习检测题,预习检测题难度不易过高,与本课题的重难点相关的知识点有选择性的录入此处,让学生在做此部分时不能感觉太简单了也不能感觉无从下手,要有一部分题目让他能够通过讨论探究完成。

第二,探究活动。

第三、课堂检测。

此处设置的题目难度深度一定比预习检测部分要更难更深。此部分不要求所有的学生都在课前做。从此处开始分“才”完成,有能力的同学可以提前尝试着做,做题慢的同学可以先不必看,学生按照自己的情况自行决定。

第四,拓展延伸。

这里出现的题目属于拔高题,一般很少有学生在课前能够做对,所以此处也不要求学生课前做,当然不排除有的同学想要挑战一下,这是提倡并且大力表扬的。第五,反思总结。学生利用这部分一方面可以小结本节课的内容,另一方面可以对自己本课题从预习探究到课堂探究各个环节进行反思,便于日后改进。上课时要明确重点、难点,重点要突出,难点要分散,并且难点要解决好。课堂讲新课的时间一定要控制在20分钟之内,最好能在10分钟之内解决问题,多给时间学生练习或进行与学习有关的`活动。

2、做到课后教学反思

上完课之后需要思考三个问题、我这节课上得如何有没有要纠正与改进的有谁的课比我还优秀怎样上这节课更好、最好并在学案、备课笔记上做好记录,为以后的教育教学提供参考。

3、落实好备课电子化,为加快对试验课的理解和掌握,积极探索教改进程,建立备课组资料库,备课组成员要积极借助网络信息收集和筛选资料存库,发挥集体智慧,在备课组会议上整理,及时应用到具体教学中。注重学案导学,编好用好导学案。

4、积极听有经验的教师的课,认真改进课堂教学上的薄弱环节。注重研究教师如何讲、注重研究学生如何学,积极推进新课改,提高课堂效率。

五、教学措施、

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生交流等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯。

3、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

4、扎实基础的同时重视数学应用意识及应用能力的培养。

5、落实抓好平时的一周一限时训练,一周一综合,注重知识的渗透

6、落实竞赛辅导、主要利用下午第三节时间,一个星期进行一至两次辅导。

《高一数学教学计划(15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式